46,601 research outputs found

    Higgs bosons of a supersymmetric E6E_6 model at the Large Hadron Collider

    Full text link
    It is found that CP symmetry may be explicitly broken in the Higgs sector of a supersymmetric E6E_6 model with two extra neutral gauge bosons at the one-loop level. The phenomenology of the model, the Higgs sector in particular, is studied for a reasonable parameter space of the model, in the presence of explicit CP violation at the one-loop level. At least one of the neutral Higgs bosons of the model might be produced via the WWWW fusion process at the Large Hadron Collider.Comment: 23 pages, 5 figures, JHE

    Einstein Manifolds As Yang-Mills Instantons

    Full text link
    It is well-known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equations from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)_L x SU(2)_R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU(2)_L instantons and SU(2)_R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU(2)_L and anti-instantons in SU(2)_R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.Comment: v4; 17 pages, published version in Mod. Phys. Lett.

    Explicit CP violation in a MSSM with an extra U(1)′U(1)'

    Get PDF
    We study that a minimal supersymmetric standard model with an extra U(1)′U(1)' gauge symmetry may accommodate the explicit CP violation at the one-loop level through radiative corrections. This model is CP conserving at the tree level and cannot realize the spontaneous CP violation for a wide parameter space at the one-loop level. In explicit CP violation scenario, we calculate the Higgs boson masses and the magnitude of the scalar-pseudoscalar mixings in this model at the one-loop level by taking into account the contributions of top quarks, bottom quarks, exotic quarks, and their superpartners. In particular, we investigate how the exotic quarks and squarks would affect the scalar-pseudoscalar mixings. It is observed that the size of the mixing between the heaviest scalar and pseudoscalar Higgs bosons is changed up to 20 % by a complex phase originated from the exotic quark sector of this model.Comment: 19 pages, 3 figure

    Higgs bosons of a supersymmetric U(1)′U(1)' model at the ILC

    Full text link
    We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic Z′Z' scenario where the extra neutral gauge boson Z′Z' does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to ZZZZ, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to ZZZZ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, ZZZZ fusion, and WWWW fusion processes.Comment: 12 pages, 2 figures, 1 table, PR
    • …
    corecore